Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

8-Chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine

Juan Wang,^a* Ling Qin,^b Yue Wang,^b Guang-Bin Li^c and Yi Deng^a

^aCollege of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, ^bSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ^cIntertek Testing Services (Tianjin) Ltd, Tianjin 300384, People's Republic of China Correspondence e-mail: wangjuantju@yahoo.com.cn

Received 6 September 2007; accepted 18 September 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.115; data-to-parameter ratio = 14.0.

The title compound, C₁₄H₁₂ClN, has a tricyclic fused-ring system composed of a benzene ring, a pyridine ring and a central nonplanar seven-membered ring.

Related literature

For related literature, see: Haria et al. (1994); Lin et al. (2005); Stampa et al. (2000).

Experimental

Crystal data

C ₁₄ H ₁₂ ClN	V = 1147.8 (5) Å ³
$M_r = 229.70$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 10.609 (3) Å	$\mu = 0.30 \text{ mm}^{-1}$
b = 13.588 (3) Å	T = 294 (2) K
c = 8.1997 (18) Å	$0.22 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 103.841 \ (4)^{\circ}$	

Data collection

Bruker SMART CCD area-detector 8106 measured reflections 2027 independent reflections diffractometer Absorption correction: multi-scan 1638 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.021$ (SADABS; Bruker, 1997) $T_{\rm min} = 0.937, \ T_{\rm max} = 0.948$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	145 parameters
$wR(F^2) = 0.115$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
2027 reflections	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2293).

References

Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SHELXTL and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Haria, M., Fitton, A. & Peters, D. H. (1994). Drugs, 48, 617-637.

Lin, W.-Y., Zhang, X.-Y., Sun, H.-X., Zhou, C.-X. & Zhao, Y. (2005). Acta Cryst. E61, 01762-01763.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stampa, A., Camps, P., Rodriguez, G., Bosch, J. & Onrubia, M. D. C. (2000). US Patent No. 6 084 100.

supplementary materials

Acta Cryst. (2007). E63, o4131 [doi:10.1107/S1600536807045813]

8-Chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine

J. Wang, L. Qin, Y. Wang, G.-B. Li and Y. Deng

Comment

Loratadine is a long-acting tricyclic antihistamine with selective peripheral histamine H1-receptor antagonistic activity (Haria *et al.*, 1994). The title compound, (I), was unexpectedly obtained in the preparation of loratadine by the cross reductive coupling between 8-chloro-10,11-dihydro-4-aza-5*H*- dibenzo[a,d] cyclohepten-5-one and ethyl 4-oxopiperidine-1-carboxylate. We report here the crystal structure of (I) (Fig. 1).

The molecule contains a tricyclic fused-ring system composed of a benzene ring, a pyridine ring and a central non-planar seven-membered ring whose conformation was found in a similar system in 8-chloro-10,11-dihydro-4-aza-5*H*- dibenzo[a,d] cyclohepten-5-one (Lin *et al.*, 2005).

Experimental

The title compound was synthesized according to the method described by Stampa *et al.* (2000). Colorless blocks of (I) were grown by slow evaporation of a methanol solution (m.p. 372–374 K).

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å), and refined as riding with $U_{iso}(H) = 1.2U_{eq}(carrier)$ or $1.5_{eq}(methyl groups)$.

Figures

Fig. 1. A view of the molecular of (I). Displacement ellopsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

8-Chloro-6,11-dihydro-5H-benzo[5,6]cyclohepta[1,2-b]pyridine

Crystal data	
C ₁₄ H ₁₂ ClN	$F_{000} =$
$M_r = 229.70$	$D_{\rm x} = 1$
Monoclinic, $P2_1/c$	Meltin
Hall symbol: -P 2ybc	Mo $K_{\lambda} = 0.1$
a = 10.609 (3) Å	Cell p
b = 13.588 (3) Å	$\theta = 2.2$

 $F_{000} = 480$ $D_x = 1.329 \text{ Mg m}^{-3}$ Melting point: 372-374 K Mo Ka radiation x = 0.71073 ÅCell parameters from 3781 reflections $y = 2.5-26.2^{\circ}$

c = 8.1997 (18) Å	$\mu = 0.30 \text{ mm}^{-1}$
$\beta = 103.841 \ (4)^{\circ}$	T = 294 (2) K
$V = 1147.8 (5) \text{ Å}^3$	Block, colorless
Z = 4	$0.22\times0.20\times0.18~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	2027 independent reflections
Radiation source: fine-focus sealed tube	1638 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -12 \rightarrow 12$
$T_{\min} = 0.937, T_{\max} = 0.948$	$k = -16 \rightarrow 16$
8106 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H-atom parameters constrained
$wR(F^2) = 0.115$	$w = 1/[\sigma^2(F_o^2) + (0.0446P)^2 + 0.6828P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.005$
2027 reflections	$\Delta \rho_{max} = 0.44 \text{ e } \text{\AA}^{-3}$
145 parameters	$\Delta \rho_{min} = -0.55 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.41484 (7)	0.65806 (6)	0.24910 (9)	0.0848 (3)

N1	1.09198 (17)	0.58490 (13)	0.8124 (2)	0.0509 (5)
C1	1.1725 (2)	0.65826 (18)	0.8727 (3)	0.0582 (6)
H1	1.2574	0.6547	0.8611	0.070*
C2	1.1368 (3)	0.73863 (18)	0.9510(3)	0.0632 (6)
H2	1.1952	0.7893	0.9897	0.076*
C3	1.0125 (3)	0.74217 (18)	0.9706 (3)	0.0606 (6)
H3	0.9862	0.7960	1.0242	0.073*
C4	0.9251 (2)	0.66698 (15)	0.9120 (2)	0.0485 (5)
C5	0.7909 (2)	0.6772 (2)	0.9426 (3)	0.0687 (7)
H5A	0.7602	0.7428	0.9069	0.082*
H5B	0.8000	0.6742	1.0630	0.082*
C6	0.6847 (2)	0.60588 (19)	0.8626 (3)	0.0593 (6)
H6A	0.7029	0.5426	0.9180	0.071*
H6B	0.6030	0.6294	0.8813	0.071*
C7	0.6700 (2)	0.59178 (15)	0.6771 (3)	0.0456 (5)
C8	0.5626 (2)	0.62711 (16)	0.5612 (3)	0.0524 (5)
H8	0.4978	0.6605	0.5976	0.063*
C9	0.5514 (2)	0.61297 (17)	0.3926 (3)	0.0550 (6)
C10	0.6447 (2)	0.56352 (18)	0.3355 (3)	0.0592 (6)
H10	0.6358	0.5537	0.2211	0.071*
C11	0.7528 (2)	0.52821 (16)	0.4512 (3)	0.0534 (5)
H11	0.8171	0.4950	0.4135	0.064*
C12	0.76631 (19)	0.54171 (14)	0.6219 (2)	0.0436 (5)
C13	0.8840 (2)	0.50542 (16)	0.7484 (3)	0.0511 (5)
H13A	0.9334	0.4621	0.6932	0.061*
H13B	0.8565	0.4676	0.8341	0.061*
C14	0.9696 (2)	0.58905 (15)	0.8304 (2)	0.0440 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0748 (5)	0.0773 (5)	0.0845 (5)	-0.0125 (3)	-0.0162 (4)	0.0282 (4)
N1	0.0510 (10)	0.0547 (11)	0.0462 (10)	0.0076 (9)	0.0102 (8)	0.0002 (8)
C1	0.0524 (13)	0.0702 (16)	0.0489 (12)	-0.0005 (12)	0.0059 (10)	0.0044 (11)
C2	0.0681 (16)	0.0580 (14)	0.0560 (14)	-0.0079 (12)	0.0000 (12)	-0.0047 (11)
C3	0.0727 (16)	0.0530 (13)	0.0503 (13)	0.0083 (12)	0.0033 (11)	-0.0131 (10)
C4	0.0569 (13)	0.0498 (12)	0.0368 (10)	0.0080 (10)	0.0068 (9)	-0.0032 (9)
C5	0.0668 (16)	0.0806 (17)	0.0610 (15)	0.0077 (13)	0.0202 (12)	-0.0243 (13)
C6	0.0608 (14)	0.0718 (15)	0.0504 (13)	0.0045 (12)	0.0237 (11)	-0.0025 (11)
C7	0.0499 (12)	0.0434 (11)	0.0461 (11)	-0.0013 (9)	0.0165 (9)	0.0010 (9)
C8	0.0491 (12)	0.0462 (12)	0.0627 (14)	-0.0005 (10)	0.0150 (11)	0.0015 (10)
C9	0.0557 (13)	0.0485 (12)	0.0563 (13)	-0.0113 (10)	0.0045 (11)	0.0103 (10)
C10	0.0721 (16)	0.0648 (15)	0.0396 (11)	-0.0208 (12)	0.0110 (11)	0.0002 (10)
C11	0.0591 (13)	0.0521 (13)	0.0531 (13)	-0.0086 (10)	0.0221 (11)	-0.0125 (10)
C12	0.0505 (12)	0.0356 (10)	0.0456 (11)	-0.0033 (9)	0.0135 (9)	-0.0015 (8)
C13	0.0559 (13)	0.0407 (11)	0.0567 (13)	0.0070 (9)	0.0135 (10)	-0.0045 (9)
C14	0.0513 (12)	0.0434 (11)	0.0358 (10)	0.0082 (9)	0.0075 (9)	0.0043 (8)

Geometric parameters (Å, °)

Cl1—C9	1.745 (2)	С6—Н6А	0.9700
N1-C1	1.329 (3)	С6—Н6В	0.9700
N1-C14	1.342 (3)	С7—С8	1.384 (3)
C1—C2	1.365 (3)	C7—C12	1.390 (3)
C1—H1	0.9300	C8—C9	1.373 (3)
C2—C3	1.367 (4)	С8—Н8	0.9300
С2—Н2	0.9300	C9—C10	1.368 (3)
C3—C4	1.386 (3)	C10—C11	1.387 (3)
С3—Н3	0.9300	C10—H10	0.9300
C4—C14	1.394 (3)	C11—C12	1.385 (3)
C4—C5	1.510 (3)	C11—H11	0.9300
C5—C6	1.511 (3)	C12—C13	1.503 (3)
C5—H5A	0.9700	C13—C14	1.509 (3)
С5—Н5В	0.9700	С13—Н13А	0.9700
С6—С7	1.504 (3)	C13—H13B	0.9700
C1—N1—C14	118.67 (19)	C8—C7—C6	121.29 (19)
N1—C1—C2	123.3 (2)	C12—C7—C6	119.02 (19)
N1—C1—H1	118.3	C9—C8—C7	120.1 (2)
С2—С1—Н1	118.3	С9—С8—Н8	120.0
C1—C2—C3	117.9 (2)	С7—С8—Н8	120.0
С1—С2—Н2	121.1	C10—C9—C8	121.2 (2)
С3—С2—Н2	121.1	C10-C9-Cl1	119.61 (18)
C2—C3—C4	121.2 (2)	C8—C9—Cl1	119.18 (19)
С2—С3—Н3	119.4	C9—C10—C11	118.9 (2)
С4—С3—Н3	119.4	C9—C10—H10	120.5
C3—C4—C14	116.8 (2)	C11—C10—H10	120.5
C3—C4—C5	117.0 (2)	C12-C11-C10	120.9 (2)
C14—C4—C5	126.2 (2)	C12—C11—H11	119.5
C4—C5—C6	120.24 (19)	C10-C11-H11	119.5
С4—С5—Н5А	107.3	C11—C12—C7	119.17 (19)
С6—С5—Н5А	107.3	C11—C12—C13	121.49 (19)
С4—С5—Н5В	107.3	C7—C12—C13	119.32 (18)
С6—С5—Н5В	107.3	C12—C13—C14	111.88 (17)
Н5А—С5—Н5В	106.9	C12—C13—H13A	109.2
C7—C6—C5	113.98 (19)	C14—C13—H13A	109.2
С7—С6—Н6А	108.8	C12—C13—H13B	109.2
С5—С6—Н6А	108.8	C14—C13—H13B	109.2
С7—С6—Н6В	108.8	H13A—C13—H13B	107.9
С5—С6—Н6В	108.8	N1—C14—C4	122.2 (2)
Н6А—С6—Н6В	107.7	N1-C14-C13	114.49 (17)
C8—C7—C12	119.68 (19)	C4—C14—C13	123.27 (19)
C14—N1—C1—C2	-0.7 (3)	C10-C11-C12-C7	-0.3 (3)
N1—C1—C2—C3	1.4 (4)	C10-C11-C12-C13	-178.9 (2)
C1—C2—C3—C4	-0.4 (4)	C8—C7—C12—C11	0.1 (3)
C2—C3—C4—C14	-1.0 (3)	C6—C7—C12—C11	179.7 (2)
C2—C3—C4—C5	179.0 (2)	C8—C7—C12—C13	178.75 (19)

C3—C4—C5—C6	171.7 (2)	C6—C7—C12—C13	-1.6 (3)
C14—C4—C5—C6	-8.3 (4)	C11-C12-C13-C14	109.3 (2)
C4—C5—C6—C7	-49.7 (3)	C7—C12—C13—C14	-69.4 (2)
C5—C6—C7—C8	-110.3 (2)	C1—N1—C14—C4	-0.8 (3)
C5—C6—C7—C12	70.1 (3)	C1-N1-C14-C13	176.47 (18)
C12—C7—C8—C9	-0.2 (3)	C3—C4—C14—N1	1.7 (3)
C6—C7—C8—C9	-179.8 (2)	C5-C4-C14-N1	-178.3 (2)
C7—C8—C9—C10	0.5 (3)	C3—C4—C14—C13	-175.4 (2)
C7—C8—C9—Cl1	179.90 (16)	C5-C4-C14-C13	4.6 (3)
C8—C9—C10—C11	-0.7 (3)	C12-C13-C14-N1	-122.11 (19)
Cl1—C9—C10—C11	179.93 (16)	C12-C13-C14-C4	55.2 (3)
C9—C10—C11—C12	0.6 (3)		

